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Abstract 

     In this paper, we determine the coreflective hull of the fuzzy Sierpinski space in the category of 

constant-generated fuzzy topological spaces. 

 

1. Introduction 

It is well-known that the subcategory FTS0 of all T0 fuzzy topological spaces of FTS of all fuzzy 

topological spaces is the epireflective hull of the fuzzy Sierpinski space Is (cf.[9]) in FTS. Then the 

question arises – what is the coreflective hull of the fuzzy Sierpinski space the category FTS. We know 

that the subcategory of Meet-complete topological spaces is the coreflective hull of the two-point 

Sierpinski space in the category TOP of all topological spaces (cf.[7]). It has been shown in [11] that 

the analogous result in FTS is not true, i.e., the subcategory of meet-complete fuzzy topological spaces 

(spaces in which topologies are closed under arbitrary meets) is not the coreflective hull of Is in the 

category FTS. In this paper, it is shown that like FTS, in the category C-FTS of constant-generated 

fuzzy topological spaces, the coreflective hull of the fuzzy Sierpinski space is not the category of meet-

complete fuzzy topological spaces. 

Keywords: Coreflective subcategory; Coreflective hull, Constant-generated fuzzy topological 

spaces,  fuzzy Sierpinski  space. 

2. Preliminaries 

      For fuzzy topological concepts, we refer [2] but recall a few here, for convenience. Throughout, 

let I denote the interval [0, 1].  

Let X be a non-empty set. A fuzzy set in X is a function from X to I=[0,1]. If  t ∈ I, then t denotes the 

constant fuzzy set in X, which takes value  t everywhere. In particular, 0 and 1 denote the constant 

fuzzy sets taking values 0 and 1 respectively. 

Definition: Given a set X, x ∈ X and t ∈ (0, 1], xt denotes the fuzzy set in X which takes value t at x 

and value 0 elsewhere. xt is often called a fuzzy point (with value t and support x). 

   The complement of µ is the fuzzy set 1 − µ,  defined as (1 − µ)(x) =   1 − µ(x), ∀x ∈ X.     

Definition(Chang [2]): A collection 𝛿 of fuzzy sets in X with 0 and 1, which is closed under    

finite meets   and arbitrary joins is called a fuzzy topology on 𝑋 and the pair ( 𝑋,𝛿)   a  fuzzy 

topological space. 
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Definition (Lowen [8]): Let X be a non-empty set. A subset δ of IX which is    closed under arbitrary 

joins and finite meets and which contains all constant fuzzy sets is called a fuzzy topology on X. 

 The members of 𝛿 are called open (or 𝛿 -open) fuzzy sets in 𝑋 and their complements are 

called closed fuzzy sets in 𝑋. The smallest (resp. the largest) fuzzy topology on 𝑋  is called 

the indiscrete (resp. discrete) fuzzy topology on  𝑋.  

    Definition: A mapping f : (𝑋, δ) → (𝑋′, δ′) between fuzzy topological spaces is called fuzzy 

continuous if f ←(µ)∈ δ,∀𝜇 ∈ 𝛿′(where f ←(µ) = µ∘ 𝑓). 

        Let (X, δ) be a fuzzy topological space, Y a set and  f: X → Y a surjective mapping. Then 

                            𝛿/f = {α ∈ IY:  f ←(α) ∈ 𝛿 }. 

is clearly a fuzzy topology on Y, called the quotient fuzzy topology on Y with respect to f, while 
(Y, δ/f) is then called the quotient space of (X, δ) with respect to f.  The resulting continuous 

mapping f: (X, δ) → (Y, 𝛿 /f ) is called       a quotient space. 

All category-theoretic notions and results used here, but not defined or explained, are fairly 

standard by now (and can be found in [1]). However, f o  r convenience, we recall some of the 

categorical notions used in the sequel (subcategories are always assumed to be full and 

isomorphism-closed). 

 

FTS shall denote the category of fuzzy topological spaces in Chang’s sense and continuous functions 

and FTS0 denote the category of T0-fuzzy topological spaces. C-FTS will denote the category of fuzzy 

topological spaces in Lowen’s sense and continuous functions and C-FTS0 denotes the full subcategory 

of C-FTS containing all T0-fuzzy topological spaces. Of course, TOP is just the category of usual 

topological spaces and continuous maps. 

Definition([9]): A fuzzy topological space (X, δ) is said to be T0 if for all distinct x, y ∈ X, ∃µ ∈ δ 

such that µ(x) ≠µ(y). 

Definition: The fuzzy topology on I, generated by {id}, where id is the identity function, both in the 

sense of Chang and in the sense of  Lowen, will be called the fuzzy Sierpinski topology. The resulting 

fuzzy topologies will be denoted by δS and C-δS respectively. (I, δS) and (I, C-δS)  will be denoted by IS 

(cf. [10]) and C-IS (cf. [9]) respectively (hence it is clear that an arbitrary member of C-IS is going to 

be of the form (t ∧ id) ∨ r with t, r ∈ I; cf. [9]). 

Definition:  A subcategory U of a category C is said to be coreflective in C if for each object X in C, ∃ 

an object XU in U and an X-morphism.    

The notions of reflective and coreflective subcategories are very important in category theory and several 

such interesting and useful subcategories have been studied by many authors. In particular, Herrlich and 

Strecker (([4], [5] and [6]) have extensively investigated such subcategories in the categories which occur 

in topology (e.g., the categories of topological spaces, uniform spaces, etc.). 

We begin with a preliminary examination of the coreflective subcategories of C-FTS. We find that 

the characterization of coreflective subcategories of C-FTS  is similar to that of the coreflective 

subcategories of TOP ([6]). 
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   We recall some of the definitions used in the sequel. 

 
Definition: An epimorphism e: A → B in a category C is called an extremal epimorphism if 

whenever e = m ◦ f in C, where m is a C- monomorphism, then m is an C-isomorphism. B is called 

an extremal quotient of A if there exists an extremal epimorphism from A to B. 

      We know that in TOP, extremal epimorphisms are precisely the quotient maps; hence the extremal 

quotients in TOP are the quotients in TOP. As both C-FTS and FTS are topological over SET, 

extremal epimorphisms are precisely the quotient maps in both C-FTS and FTS (cf. [5]) and so 

extremal quotients are the quotients in both C-FTS and FTS. 

 

Definition: A category  C is said to have the unique  extremal  epi- mono  factorization  property  if (i)  

each C-morphism f  admits an extremal epi-mono factorization in C, say f  = g ◦ h, where h is an 

extremal epimor- phism and g  is a monomorphism and (ii)  if f  = g′ ◦ h′ is another extremal epi-mono 

factorization of f  in C, then there exists a C-isomorphism u such that u ◦ h′ = h and g ◦ u = g′ 

If in addition, C is also closed under the composition of extremal epimor- phisms, then C said to admit 

the strong unique extremal epi-mono factor- ization property. 

Theorem 2.1. ([5]) If C is a well-powered category, which has products and the epi-mono factorization 

property, then C has the unique extremal epi-mono factorization property. 

Definition : A morphism f : X → Y in  a  category C is called constant if for each C-object Z and each 

pair of C-morphisms g, h : Z → X, f ◦ g = f ◦ h. 

It is known that the constant morphisms in TOP are precisely the constant maps (cf. [6]). We note that 

in C-FTS, like TOP, there is exactly one fuzzy topology on a single-point set. As a consequence of 

this, in C- FTS also, the constant maps are continuous. But, in contrast to TOP and C-FTS, in FTS, 

there can be many fuzzy topologies on a single-point set and hence constant maps need not be 

continuous in FTS. 

Definition:  A category C is said to be constant-generated if for each pair (X, Y ) of C-objects: (i) C(X, 

Y ) ≠ ∅ and (ii) for every distinct pair f, g : X → Y of C-morphisms, there exists a C-object Z and 

a constant C-morphism k : Z → X such that g ◦ k ≠ f ◦ k. 

TOP is well-known to be constant-generated (cf. [6]). Like TOP, C- FTS is also constant-generated; 

the main reason being the continuity of constant maps in both the categories. We observe that for some 

pair (X, Y ) of FTS-objects, we may have FTS(X, Y ) =∅; in particular, if (X, δ) is an indiscrete fuzzy 

space and (Y, ∆) is a discrete fuzzy space in FTS, then there does not exist any continuous map from X 

to Y . So FTS is not constant- generated. 

We now state the following results from [5] which will be used in the sequel. 

http://www.jetir.org/


© 2015 JETIR July 2015, Volume 2, Issue 7                                                                       www.jetir.org (ISSN-2349-5162) 

JETIR1701671 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1832 
 

Theorem 2.2 ([5]) Let C be a well-powered category, which has coproducts and the extremal epi-mono 

factorization property. Then a subcategory U of C is monocoreflective in C if and only if U is closed 

under the formation of coproducts and extremal quotients. 

Theorem 2.3. ([5]) If U is a coreflective subcategory of a constant- generated category C, then U is 

both monocoreflective and epicoreflective in C. 

 

Theorems 2.2 and 2.3 can be combined to yield: 

 
Theorem 2.4. Let C be a well-powered category, which has coproducts and the extremal epi-mono 

factorization property. If C is also constant- generated, then a subcategory U of C is coreflective in C if 

and only if U is closed under the formation of coproducts and extremal quotients. 

Theorem 2.5. ([5]) If C is a well-powered category, which has coproducts and the extremal epi-mono 

factorization property, then the monocoreflective hull in C of a class A of C-objects exists. Furthermore, 

if C has the strong unique extremal epi-mono factorization property, then the objects of this 

monocoreflective hull of A in C are exactly all the extremal quotients of coproducts of objects in A. 

    In view of Theorems 2.3 and 2.5, we have the following: 
 

Theorem 2.6. If C is a well-powered and constant-generated category, which has coproducts and 

strong unique extremal epi-mono factorization property, then the coreflective hull in C of a class A of 

C-objects exists and the objects of this coreflective hull of A in C are exactly all the extremal quotients 

of coproducts of objects in A. 

 

3. The coreflective subcategories of C-FTS 

As SET is well-powered and has epi-mono factorization property and as both C-FTS and FTS are 

topological over SET (cf. [5], [6] resp.), so both C-FTS and FTS are well-powered and have epi-mono 

factorization property. Both C-FTS and FTS have products, so by Theorem 2.1, both the categories have 

unique extremal epi-mono factorization property. As the composition of quotient maps (extremal 

epimorphisms) in both C-FTS and FTS is a quotient map, so both have strong unique epi-mono 

factorization property. Also, C-FTS  is constant-generated, while FTS is not constant-generated. So 

Theorem 2.5 is applicable to C-FTS, as a consequence of which, we are in a position to characterize 

coreflective subcategories and the objects of the coreflective hull of any class of C-FTS-objects. Thus, we 

are led to the following: 
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Theorem 3.1([12]) 

(i) A subcategory U of C-FTS is coreflective iff it is closed under the formation of coproducts and 

quotients. 

(ii)  In C-FTS, the coreflective hull of any A ∈ obC-FTS always exists. Moreover, its objects are 

precisely the quotients of the coproducts of copies of A.  

3.1.The coproducts of copies of a fuzzy topological space in 

 C-FTS 

We proceed to give an internal description of the coproducts in C-FTS of copies of any fuzzy topological 

space, which we shall then use for our main results. Let (X, δ) ∈ obC-FTS and J be some index set. 

Put Xj = X × {j}, j ∈J , and denote   ⋃ 𝑋𝑗𝑗∈𝐽   by   Xj .   For  each  µ  ∈  δ,  define  µj  :  Xj  →  I  as 

µj(x, j) = µ(x) and put δj = {µj  | µ ∈ δ}, j ∈ J}.  Then δj is a fuzzy topology on 𝑋𝑗  (and ( 𝑋𝑗, δj ) 

is homeomorphic to (X, δ)).  Let δ+ = {ν∈ 𝐼𝑋𝑗
   

|ν|Xj   ∈ δj, ∀j ∈ J}.  It can be verified that ( Xj , δ   

) is the coproduct of |J |  copies of (X, δ) in C-FTS. 

Let  [X]C-FTS  denote the coreflective hull in C-FTS of a C-FTS-object X. 

Proposition 3.1. Let X = (X, δ) be C-FTS-object. Then Y = (Y, ∆) is an object of [X]C-FTS iff ∃ a 

family {(Yj, ∆j) | j ∈ J} of fuzzy subspaces of Y such that Y = 
j
∪
∈J

Yj , each Yj is a quotient of (X, δ), j ∈ 

J , and for each µ ∈ IY, µ is open in Y iff each µ|Y is open in Yj, j ∈ J. 

4. The coreflective hull of the fuzzy Sierpinski space C-IS  

Consider the two-point Sierpinski topological space 2s. The following result gives the descriptions of 

the epireflective and the coreflective hulls of 2s in TOP. 

 

Proposition 4.1. ([9]) The category C-FTS0 of all T0-fuzzy spaces is the epireflective hull of C-IS 

in the category C-FTS. 

We show that the subcategory of those fuzzy topological spaces (X, δ) for which δ is closed under 

arbitrary meets, does not form the coreflective hull of C-IS in the category C-FTS. We then also 

describe what this coreflective hull is. 

 

Let the fuzzy topological counterpart of meet-complete topological spaces be called meet-

complete fuzzy topological spaces, i.e., fuzzy spaces whose fuzzy topologies are closed under 

arbitrary meets. Let MC-C-FTS  denote the category of all such spaces in C-FTS. We now show 

that MC-C-FTS is coreflective in C-FTS. 
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Theorem 4.1.([11]). MC-C-FTS is a coreflective subcategory of C-FTS. 

      Although MC-C-FTS is a coreflective subcategory of C-FTS, contrary to what one might expect, we now 

show by means of the following example that it is not the coreflective hull of C-IS in C-FTS. 

Example: Consider the fuzzy topological space C-ID = (I,C-δD),  where C-δD =< {id, 1 − id} >. 

Then (I,C-δD) ∈ obMC-C-FTS. However, (I,C-δD) cannot be a quotient of a coproduct of copies 

of C-IS’s. To see this, consider the possibility of the existence of a quotient map q : ( (C-IS ), δ
+) 

→ (I,C-δD). Then as id ∈ C-δD, q←(id) = id ◦ q = q must be in δ+,i.e., q|C−IS
j '   

= 𝑖𝑑𝑗′  for some 𝑗′ 

∈ J  (since q  is surjective). As 1 − id  ∈C-δD , q←(1 − id)|C−IS
jJ    

=  (1 − q)|C−IS
jJ    

=  1 − idj’   ∈ δSj’
 

for    j’ ∈ J , which is clearly false. 

Thus (I,C-δD) cannot be a quotient of a coproduct of copies of C-IS’s and so 

C-ID is not an object of the coreflective hull of C-IS. 

From the above, it is clear that finding all quotients of C-IS will help us to determine [C-IS]C-

FTS. This is done through the following result. Before proceeding, we note that any open fuzzy set 

µ in C-IS is of the form (t∧id) ∨r, t, s ∈ I, i.e., µ|[s,t] : [s, t] → [s, t] is a bijection, µ|[0,s) = s and 

µ|(t,1] = t. 

Proposition 4.2. A fuzzy topological space (X, δ) is a quotient of C-IS iff 

|X| ≤ |I| and δ =< α >, where for some partition {X1, X2, X3} of X and for some s, t ∈ I, α|X1 : 

X1 → [s, t] is a bijection, α|X2 = s, α|X3 = t. 

Proof: Let (X, δ) be a quotient of C-IS. Then there exists some quotient map q : (I,C-δS) → (X, 

δ) in C-FTS. As q is surjective, |X| ≤ |I|. 

Let µ ∈ δ. We note that: 

(i) If q←(µ) = t, then µ = t, t ∈ I. 

 
(ii) If q←(µ) = id, then q is a bijection (as |X| ≤ |I|) and µ = q−1. 

 
(iii) If q←(µ) = id ∧ t, for some t ∈ (0, 1), then µ ◦ q|[0,t] = id|[0,t], whereby q|[0,t] is injective and 

so µ|q([0,t]) : q([0, t]) → [0, t] is bijective such that µ|q((t,1]) = t. 

(iv) If q←(µ) = id ∨ t for some t ∈ (0, 1), then µ ◦ q|[t,1] = id|[t,1], whereby 
 

q|[t,1] is injective and µ|q([t,1]) is injective such that µ(q([t, 1])) = [t, 1] and µ|q([0,t)) = t. 

(v) If q←(µ) = (t∧id)∨s, for some s, t ∈ (0, 1), s < t, then µ◦q|[s,t] = id|[s,t], whereby q|[s,t] is 

injective and µ|q([s,t]) is injective such that µ(q([s, t])) = [s, t] and µ|q([0,s)) = s, µ|q((t,1]) = t. 
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Consider the case when q is bijective. As q is a quotient map and id ∈ C-IS, q
−1 ∈ δ. Clearly t 

∈ δ, ∀t ∈ I. Put α = q−1. Then α is bijective. We show that δ =< α >. As for every subbasic open 

fuzzy set µ in C-IS, ∃ some ν ∈< α > such that q←(ν) = µ and as q← is arbitrary join- and arbitrary 

meet- preserving, for each µ ∈C-δS, ∃ν ∈< α > such that q←(ν) = µ. Hence δ =< α >, where α is 

a bijection on X. 

If q is not bijective, then ∄ any ν ∈ δ such that q←(ν) = id. So, in view of (iii), (iv), (v) (above 

mentioned cases), we consider the following cases. 

Consider the case when q is not bijective, but for some t ∈ (0, 1), q|[0,t] is injective. Then by (iii), 

∃µ ∈ δ such that µ◦q = t∧id, whereby there exists a partition {X1, X2} of X and t ∈ (0, 1) such that 

µ|X1  : X1 → [0, t] is bijective 

and µ|X2  = t. Since q is not injective,  ∄β ∈ δ such that β ◦ q = id. Moreover, 

if β∈ δ, then β ◦ q  = (v ∧ id) ∨ u implies that β|q([u,v])  : q([u, v] → [u, v]  is bijective for some v ≤ 

t or β is a constant fuzzy set. Thus δ =< µ >, where for some partition {X1, X2} of X, for some t ∈ 

(0, 1), µ|X1 is injective, µ(X1) = [0, t] and µ|X2 = t. 

Consider the case when q is not bijective, but for some t ∈ (0, 1), q|[t,1] is injective. Then by (iv), 

∃µ ∈ δ such that µ ◦ q = id ∨ t, implying that µ ◦ q|[t,1] = id|[t,1], whereby ∃ a partition {X1, X2} of 

X such that µ|X1 :X1 → [t, 1] is bijective and µ|X2 = t. Since q is not injective, ∄β ∈ δ such that 

β ◦ q = id. Moreover, if β ∈ δ, then β ◦ q = (v ∧ id) ∨ u, u, v ∈ I implies that β|q([u,v]) : q([u, v]) → [u, 

v] is bijective for some u ≥ t or β is a constant fuzzy set. Thus δ =< µ >, where for some 

partition {X1, X2} of X and for some t ∈ (0, 1), µ|X1 is injective, µ(X1) = [t, 1] and µ|X2 = t. 

Consider the case when q is not bijective, but for some s, t ∈ (0, 1), q|[s,t] is injective. Then by 

(v), ∃µ ∈ δ such that µ ◦ q = (t ∧ id) ∨ s, implying that µ ◦ q|[s,t] = id|[s,t], whereby ∃ some partition 

{X1, X2, X3} of X such that µ|X1 : X1 → [s, t] is bijective, µ|X2 = s and µ|X3  = t.  Since q  is not 

bijective,  so ∄β ∈ δ such that β ◦ q = id. Since for any t ∈ (0, 1), q|[0,t] is not injective, so ∄β ∈ δ 

such that β ◦ q = id ∧ t for any t ∈ (0, 1). Moreover, if β ∈ δ, then β ◦ q = (v ∧ id) ∨ u, u, v∈ I  

implies that β|q([u,v]) : q([u, v]) → [u, v]  is bijective for some u ≥ s and v  ≤ t or β  is a constant 

fuzzy set.  Thus     δ =< µ >, where for some partition {X1, X2, X3} of X, µ|X1 : X1 → [s, t] is 

bijective, µ(X1) = [s, t], µ|X2 = s and µ|X3 = t . 
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Consider now the case when q is not bijective such that for distinct s, t ∈ I, q|[s,t] is not injective. 

Then ∄ µ ∈ δ such that µ ◦ q = (t ∧ id) ∨ s, unless s = t. Thus δ is indiscrete. 

So if (X, δ) is a quotient of C-IS, then δ =< α >, where for some partition 

{X1, X2, X3} of X and some s, t ∈ I, µ|X1  is bijective, µ(X1) = [s, t], µ|X2  = s 

and µ|X3 = t. 

Conversely, let (X, δ) ∈ obC-FTS such that |X| ≤ |I| and δ =< α >, where for some partition 

{X1, X2, X3} of X, µ|X1 : X1 → [s, t] is injective, µ(X1) = [s, t], µ|X2 = s and µ|X3 = t. Let q : (I,C-δS) 

→ (X, δ) be a map such that q|[s,t] is injective, q([s, t]) =X1 and q([0, s)) = X2, q((t, 1]) = X3. As q← 

is arbitrary join- and arbitrary meet- preserving, it is sufficient to show that for any subbasic open 

fuzzy set µ in X, q←(µ) ∈ C-δS. Then for µ = α, q←(µ)|[s,t] = id|[s,t] and q←(µ)|[0,s) = s, q←(µ)|(t,1] = 

t and so q←(µ) = (t ∧ id) ∨ s. For µ = t, t ∈ I, q←(µ) = t, t ∈ I. Hence q←(µ) ∈ C-δS for each µ∈ δ. 

Next, let q←(µ) ∈ C-δS, for some µ ∈ IX. We wish to show that µ ∈ δ. As q←(µ) ∈ C-δS, q
←(µ) 

= (v ∧ id) ∨ u, u, v ∈ I, implies that µ|q([u,v]) : q[u, v] → [u, v] is bijective for some u ≥ s and v ≤ 

t, µ|q([0,u)) = u and µ|q((v,1]) = v, i.e., µ = (v ∧ α) ∨ u, whereby µ ∈ δ. 

We have thus shown that µ ∈ δ ⇔ q←(µ) ∈ C-δS, which in turn shows that (X, δ) is a quotient 

of (I, C-δS). 

We now characterize [C-IS]C-FTS, the coreflective hull in C-FTS of C-IS. 

 
Theorem 4.2. A fuzzy topological space (X, δ) is an object of [C-IS]C-FTS 

iff it satisfies the following two conditions: 

(a) X  = 
j
∪
∈J

Xj , for some index set J  such that for each j  ∈ J, |Xj | ≤ |I| and the subspace 

fuzzy topology δj on Xj is < α >, where for some partition {X1, X2, X3} of Xj and for 

some s, t ∈ I, α|X1 : X1 → [s, t] is a bijection and α|X2 = s, α|X3 = t, 

 

(b) for each µ ∈ IX, µ ∈ δ iff µ|X ∈ δj, for each j ∈ J. 

Proof: The proof directly follows from Propositions 3.1 and 4.2. 
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